praegune kellaaeg 23.06.2025 00:17:23
|
Hinnavaatlus
:: Foorum
:: Uudised
:: Ärifoorumid
:: HV F1 ennustusvõistlus
:: Pangalink
:: Telekavad
:: HV toote otsing
|
|
autor |
|
Le Inc
HV Guru

liitunud: 06.09.2002
|
09.03.2006 12:24:39
|
|
|
Krt see on küll viimane post sellel teemal (hulluks võib minna ). See on potentsiaalne energia! Pealegi saaks sellest vast 10 miljoni ameerikalse aastase energiavajaduse ära katta (vägivaldne võrdlus).
* Maakera taimestik suudab aasta jooksul salvestada Päikese poolt saadetud 5,6*10^3 ZJ (zettadaul 10^21 J) 6,5 Gt*a-1 rohelise (orgaanilise) massina. Siin peaks kaudselt ka väetised jms. kulud sees olema. Muide põllukultuuride kasvatamine võib olla hoopis töömahukam (sealjuures ka energiamahukam) kui lasta loodusel omaviisi käia. Aga samas ega lepa lehti meist ilmselt keegi sööma ei hakka.
Kui me suudaks kas või 0,005% Maale langevast päikese kiirgusest ära kasutada, oleks aastane energiavajadus kaetud.
|
|
Kommentaarid: 56 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
54 |
|
tagasi üles |
|
 |
Tanel
HV Guru

liitunud: 01.10.2001
|
09.03.2006 12:37:51
|
|
|
tsitaat: |
Kui me suudaks kas või 0,005% Maale langevast päikese kiirgusest ära kasutada, oleks aastane energiavajadus kaetud.
|
kõik õige, aga seadmete/liinide/akude valmistamisele kulub meeletus koguses ressurssi ja aega, lisaks ei ole päikesenergiaga midagi teha transpordi osas, kuna praegused sisepõlemismootorid vajavad fossiilseid kütuseid.
Kui me räägime siin oma turbaväljadest, millega teoreetiliselt saab katta Eesti vajadused, siis muu maailm seisab silmitsi hoopis tõsisemate probleemidega.
Püsigem rohkem teemas
_________________ Hinnavaatlus.ee - leia parim hind!
HV valuutakalkulaator |
|
Kommentaarid: 465 loe/lisa |
Kasutajad arvavad: |
   |
:: |
12 :: |
7 :: |
358 |
|
tagasi üles |
|
 |
kellu
HV kasutaja

liitunud: 26.03.2002
|
09.03.2006 12:58:12
|
|
|
Tanel kirjutas: |
tsitaat: |
Kui me suudaks kas või 0,005% Maale langevast päikese kiirgusest ära kasutada, oleks aastane energiavajadus kaetud.
|
kõik õige, aga seadmete/liinide/akude valmistamisele kulub meeletus koguses ressurssi ja aega, lisaks ei ole päikesenergiaga midagi teha transpordi osas, kuna praegused sisepõlemismootorid vajavad fossiilseid kütuseid.
Kui me räägime siin oma turbaväljadest, millega teoreetiliselt saab katta Eesti vajadused, siis muu maailm seisab silmitsi hoopis tõsisemate probleemidega.
Püsigem rohkem teemas  |
Maailm seisab vist lähitulevikus silmitsi mingit sorti maailmalõpuga metaani läbi. Kardetakse ookeanis olevate metaanklatraatide vabanemist maailmamere soojenemise tõttu. Ja sama kardetakse Siberis asuvate turbaväljade sulamisel juhtuvat, ülisuur kogus metaani võib korraga atmosfääri pääseda. Ükskõik kumb enne juhtub, tingib see suure tõenäosusega ka teise sündmuse, kaskaadiefekt. Selle stsenaariumi puhul ei ole naftakeemia enam probleemiks nagunii...
Nafta kasutamine tuleks juba praegu piirata ainult keemiatööstuse tooraineks, see on õige.
Fossiilkütuseid saab energia tootmisel (ka mobiilse energiavajadusel jaoks) asendada. Kehv geopoliitiline aspekt selles, et ka näiteks suvalist päritolu energia (kõige tõenäolisemalt keemilisel) salvestamisel jäävad endistviisi võtmepiirkondadeks Araabia ja Põhja-Aafrika riigid.
|
|
Kommentaarid: 15 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
15 |
|
tagasi üles |
|
 |
Ho Ho
HV Guru

liitunud: 16.02.2002
|
09.03.2006 13:09:35
|
|
|
Tollest 91lk uurimusest mõned tsitaadid mis tundusid huvipakkuvad:
To satisfy a significant part of the ever-growing automotive fuel and electricity demand in the
world, five billion oven-dried tonnes (5 × 1015g) of biomass would be needed each year for decades
to come. At 10 oven-dried tonnes (odt)/yr-ha of the average29 replaceable dry mass yield from
industrial plantations, this mass of bio-feedstock would require an annual harvest of 1/8 of the
dedicated 500 million hectares of these plantations with the eight-year crop rotation an area close
to 1/2 of the total area of tropical forest on the earth in 2004. These estimates are not merely a
product of our imagination. A United Nations Bioenergy Primer (Kartha and Larson, 2000) states:
In the most biomass-intensive scenario, [modernized] biomass energy contributes...by 2050...
aboutone half of total energy demand in developing countries. . . . The IPCCs30 biomass intensive future
energy supply scenario includes 385 million hectares of biomass energy plantations31 globally in
2050 (equivalent to about one quarter of current planted agricultural area), with three quarters of
this area established in developing countries.
To maintain a high average yield of biomass over many crop rotations (over, say, 100 years),
industrial tree plantations require: (1) intense mechanical site preparation and weed control with
pre- and post-emergent herbicides; (2) periodic fertilization with macronutrients (N, P, K, Ca, Mg
and S), and micronutrients (Fe, Cu, B, Mn, Mo, Zn, Se, etc.); (3) continuous use of insecticides; and
(4) improved matching of plant genotypes to the plantation sites. For example, in the Jari, Brazil,
plantation (McNabb and Wadouski, 1999), the site preparation involved slashing and burning of
the native forest in 1972; chainsaw fell or drag chain removal of plantation trees, rotary hoeing,
intensive removal of vegetative competition by manual weeding and herbicides, and switching to
different tree species several times every 6-10 years.
To increase chances of high biomass production, industrial plantation designers will inevitably
tend to choose the biologically prolific sites in good climate, with seemingly32 rich soil, good water
supply, and easy access (i.e., the ever-receding boundaries of mature tropical forests), rather than
the remote, poor quality habitats with damaged soil and little vegetation. Therefore, the new huge
industrial plantations will negatively impact or destroy some of the most pristine ecosystems on the
earth (this is a statement of fact, not a moral judgement). In effect, the low-entropy environment
in the tropics will be mined, see (Patzek, 2004), just like everywhere else since times immemorial.
In summary, we are discussing here a possibility of the largest industrial forestry project in the
history of mankind. This project would cause the severest ever competition for good-quality land,
impact every ecosystem on the earth, and all humans.
...
The most thorough known to us studies of a terra-firme forest site in Eastern Amazonia were
performed by Mackensen et al. (2000) and Klinge et al. (2004). These studies revealed that
the mean living above-ground phytomass was 257 tonnes/ha, and the mean mass of litter was
14 tonnes/ha. The mass estimate by Mackensen et al. was low when compared with other
published studies. More than 50% of carbon, 20% of total nitrogen, 10% of total phosphorus, and
66-99% of total potassium, calcium and magnesium were locked in the above-ground phytomass.
Consequently, phytomass removal and destruction during forest conversion to a plantation will lead
to major nutrient losses. The nutrient store estimate by Mackensen et al. was medium-to-high
when compared with other published studies. Some of the nutrient losses can be replenished with
synthetic fertilizers, but other cannot, leading to a slow degradation of plantation soil and biomass
productivity.
...
Wood pellets, see Figure 13, are the most valuable product of an industrial wood-for-energy
plantation. They are easy to transport over long distances, relatively safe and easy to store, and
easy to process in an overseas chemical plant.
Large industrial tree plantations are highly mechanized, and require fossil energy to fell trees,
strip branches from tree stems, transport the bark-covered stems from the plantation slopes to
a wood pellet-making facility, produce wood pellets, and transport these pellets to a local port
by truck and train, or barge, and overseas by ship. Fossil energy is also required to mechanically
prepare the plantation sites for each new tree rotation, deliver fertilizers, herbicides and insecticides
to the trees, or remove weeds.
Part of the fossil energy requirement may be satisfied by burning the local biowaste (slash,
undergrowth) to produce heat and electricity, thereby stripping the vital nutrients from the soil,
and exacerbating erosion problems. This is the Faustian dilemma44 of industrial forestry: What is
saved in biowaste must be put back as fertilizers and other measures to fight the ever-growing
rate of soil depletion and erosion. The remaining energy requirement is due to automotive fuel use
in forest machinery and transportation vehicles.
...
The conversion of wet and perishable stemwood/stembark, see Figure 12, to dry, compact and
portable wood pellets, see Figure 13, is the single biggest energy outlay of an industrial biomassfor-
energy plantation. An inefficient facility using the wood waste is out of question. Consider
the following example:
Example 1 A wood pellet production facility in New Zealand (Nielsen and Estcourt, 2003) produces
8000 tonnes of pellets per year by using 36 GWh of steam generated from 20 000 tonnes/yr of
low-quality wood waste (with the heating value of 6.4 MJ/kg) as heat and electricity. Therefore,
the specific energy requirement to produce wood pellets is
(36 GWh × 3600 s/h)/(8000 tonnes of pellets)= 16 MJ/kg (5)
Thus, the transformation of raw wood into pellets requires 16/20 = 80% of the calorific content
of oven-dry hardwood45! If wood pellets are produced in small quantities as a byproduct of other
industrial processes (paper pulp and timber production), this inefficiency may be tolerated because
there exists genuine waste wood. If the large-scale production of wood pellets is the only goal,
then the whole concept breaks immediately down, because 4 kg of the wood must be burned to
produce 1 kg of pellets.
thorough economic analysis of eleven alternative designs of a state-of-the-art pelleting factory
has been performed by Theka and Obernbergera (2004). Because wood leaving the tropical
plantations is wet, we will consider here only their Scenarios 1-6, which require drying of raw
material with 55% of moisture by weight46. The energy costs of chipping tree stems were not
included in the analysis by Theka and Obernbergera (2004), while the energy costs of griding
the chips were partially included.
Our estimate of energy required to chip the raw wood is based on the work by Spinelli and
Hartsough (2001), who estimated that, given the chipper power in kW, and a wood piece mass
in metric tonnes, the time to chip this wood is
tchip = 60 × (0.02 + 13.1/( Piece mass × Power) + 566 / Power)
Here we have assumed that the wood chippers are stationary electrical machines, 250 kW in power,
and the wood pieces are 300 kg on average.
As the wood pelleting facilities of interest here will operate in remote locations in the tropics,
no heat recovery as district heat is included. Also, the assumed 35% efficiency of an electric power
plant may be difficult to achieve in remote conditions; therefore, a 20% efficient electric power
plant is also considered, see Table 12. The results for the more efficient power plant are shown in
Figure 14. The average of all scenarios involving 55%-wet raw wood is 6.4 MJ of primary energy
per kilogram of 10%-wet pellets. For the lower power plant efficiency, the resulting average primary
energy requirement is 8.1 MJ/kg of pellets.
Remark 12 A highly-efficient conversion of 55%-wet raw wood to 10%-wet wood pellets requires
on average 33 41% of the gross calorific value of oven-dried wood. This conversion will be carried
out in a central, state-of-the-art facility, capable of producing 20 000 60 000 tonnes of pellets per
year. If wood waste from tree plantations were used to power this facility (the most probable
scenario), additional fertilizer use and other soil conservation measures would have to ensue.
Parenthetically, the energy cost of converting raw wet wood into portable pellets is comparable
to the energy dissipated on fermenting aqueous glucose to a beer with 8% ethanol by weight.
However, the wood pellets are a high quality fuel or feedstock, while the 8% beer needs a lot more
heat to separate the remaining 92% of water from the ethanol.
...
In terms of useful shaft work, wood conversion to ethanol is by far the poorest of the three alternatives
presented here, and we shall provide only an approximate conversion efficiency. Ethanol
is obtained from enzymatically converting wood48 cellulose (45% by weight) into glucose, wood
hemicellulose (30% by weight) to xylose, and fermenting both sugars to 8-10% industrial beer.
This beer is then distilled to 96% ethanol using 19 MJ/kg ethanol in fossil fuels, and the remaining
water is excluded in molecular sieves (Patzek, 2004). The respective conversion efficiencies,
assumed after Badger (2002), are listed in Table 13.
Therefore, from 1 kg of 10%-wet pellets, one may obtain 0.9×(0.131+0.069) = 0.18 kg of 100%
ethanol at the fossil energy expense of 3.4 MJ to distill the beer plus more energy and chemicals to
process the wood. For simplicity, we will assume that the remaining 0.23 kg of lignin in the wood
pellets will deliver the necessary 3.5 MJ of heat. The chemical exergy of the produced ethanol
is (Patzek, 2004) 29.65 × 0.18 = 5.33 MJ/kg pellets. If this ethanol is then burned to power a
35%-efficient car, 1.87 MJ/kg pellets is obtained as shaft work.
Gigantic tree plantations could be designed to replace, say, 10% of the fossil energy used globally
every year for 40-80 years. About 500 million hectares (a little more that 1/2 of the United States
area) of new plantations would be needed. These plantations would be implemented in the tropics
in good climate with plentiful water supply, apparently good soil, and easy access, i.e., along
the ever-receding edges of natural tropical forests and along major rivers. Talk about developing
industrial tree plantations for profit in degraded and sterile environments does not seem practical
or convincing. Therefore, the new biomass-for-energy plantations will impact disproportionately
many of the most important ecosystems on land and in shallow sea water. Will the global damage
of tropical forest and clean water sources be beneficial in terms of saving other earth resources?
The answer based on the work presented in this paper is a decisive no. In order to be profitable, a
biomass-for-energy plantation must achieve a consistently high yield of dry wood mass. Trees that
grow fast (e.g., Acacia mangium) use more water and nutrients than the slower-growing species.
Consequently, these fast-growing trees damage soil and their wood is excessively wet after harvest.
We find that sustainable generation of electricity and/or Fischer-Tropsch (FT) diesel fuel
from wood pellets produced in remote tropical plantations is impossible, unless sun-drying of raw
wood and improved soil management are widely implemented. In our opinion, the scale and rate
of wood processing necessary to replace a substantial fraction of automotive fuel and electricity
demand on the earth makes the widespread sun-drying of wood impractical or impossible.
The gigantic tropical sugarcane plantations on mostly agricultural land suffer from the similar
weaknesses. Their shaft work output from burning cane-ethanol in the efficient internal combustion
engines is insufficient to cover the cumulative free energy consumption in producing this ethanol.
The only option that gives a marginal benefit is the conversion of the sugarcane ethanol to hydrogen
used in 60%-efficient fuel cells to produce electricity (Deluga et al., 2004), but such cells do not
exist, see Appendix A.
In general
1. Biomass-for-energy plantations are environmentally costly and inefficient engineered systems,
and their long-term high yields are uncertain and questionable.
2. Locally-produced electricity from biomass seems to be the best option that could make a
prolific acacia and sugarcane plantation sustainable, if their immediate environments were
not degraded by the toxic ash and air emissions.
3. The Fischer-Tropsch automotive fuel from biomass is not as good an option, and the
plantations producing it are not sustainable.
4. Ethanol from tree biomass seems to be an especially poor choice.
5. The anhydrous ethanol automotive fuel from sugarcane stems is a better option, yet it is
unsustainable too, even when burned in efficient hybrid cars.
6. Plant residues, called trash by those who do not understand their vital importance to
the long-term survival of plantation soils, should be kept on the plantations and allowed to
decompose.
7. Plant trash cannot be a significant source of biofuels, and it is not independent of parent
ecosystems.
In particular, for the tree plantations, we reiterate the following:
1. The most desirable product of dedicated industrial tree-for-energy plantations may be wood
pellets produced in very efficient central facilities close to the plantations. Production of these
pellets requires 33-41% of the high heating value of the wood.
2. Excellent site characterization by Mackensen et al. (1999; 2000; 2003), enabled us to use
two average stands of acacias and eucalypts in a freshly established, prolific plantation in
Indonesia as the examples of generic industrial tree plantations in the tropics.
3. Our example acacia and eucalypt stands were the first tree rotations, and received small
fertilizer treatments of 100 kg NPK/ha. The plantation trees were mostly depleting the
initial store of nutrients in the plantation soil, i.e., the environmental low entropy (Georgescu-
Roegen, 1971; Patzek, 2004).
4. We have calculated the minimum restoration work of nonrenewable natural resources depleted
by the example tree stands, and compared it with the maximum useful work obtained from
the plantation wood pellets as (a) electricity generated in an efficient power station, the
FT diesel fuel burned in a 35%-efficient car plus cogeneration electricity, and (c) wood-ethanol
burned in a similarly efficient car.
5. If this useful work is larger than the minimum restoration work, the example stands are
sustainable under our assumptions, otherwise they are not.
6. To calculate the long-term restoration work, we have assumed fertilizer treatments equal to
the amounts of soil nutrients (N, P, K, Ca, and Mg) depleted during a single tree rotation
and site preparation that follows each harvest.
7. We have assumed that fertilizer application efficiency is 100%, i.e., 30-90% of the various
nutrients are provided by natural (management-independent) fluxes.
8. We have neglected the cumulative exergy consumption in sea transport of wood pellets and
their storage costs.
9. Under the conservative assumptions in this paper, it is possible to show that even an exceptionally
prolific stand of Acacia mangium (22 odt/ha-yr), see Figure 5, is not sustainable
with respect to Options (a) and above, unless the cumulative exergy consumption in wood
drying and chipping is cut in half. In view of Item 1 above this cannot be done, unless sundrying
of raw wood is employed, which in turn may be impossible when wood is processed at
a very high rate.
10. Conversion of acacia wood pellets to ethanol that powers the same efficient car, Option (c),
is never sustainable.
11. The example stand of Eucalyptus deglupta is not sustainable with respect to Options (a)-
(c), with or without sun-drying of wood, because its net productivity is only 5 odt/ha-yr,
close to the average productivity of tropical forests, see Figure 5.
12. After several tree rotations, the progressively damaged soil may not support the consistently
high biomass yields from the two tree stands.
13. In the long run, therefore, increased fertilizer, herbicide, and insecticide treatments are inevitable,
and their inherent high exergy costs and negative environmental impacts will increase
the degree of unsustainability of these two stands.
14. Plantation management and average biomass yield are highly site-specific, and it is difficult
to make sweeping generalizations from an analysis of the two example tree stands.
For the sugarcane plantations we conclude that
1. An average sugarcane plantation in Brazil is as efficient in sequestering solar energy as the
prolific acacia plantation (all acacia slash must be left on the plantation to decompose, but
only some sugarcane slash is left), and its maintenance costs a little more free energy than
that of the acacias.
2. Ethanol production from sugarcane is driven by burning the cane leftovers, bagasse and parts
of attached cane tops, and converting their heat of combustion to steam, electricity and shaft
work. Sugarcane stem crushing, juice extraction and fermentation, and ethanol distillation
consume almost exactly the same free energy as wood pellets from the acacia stems and bark.
3. We have calculated the free energy consumed to clean the sugarcane distillery wastewater; it
is non-negligible, and requires extra fossil fuel and grid electricity.
4. Despite efficient sequestration of solar energy, the prolific sugarcane-for-ethanol plantation in
Brazil is not sustainable according to our strict criteria, unless its ethanol powers 60%-efficient
fuel cells. The problem is that such cells do not exist, see Appendix A.
5. The sugarcane slash and attached tops sequester a significant amount of solar energy, and
deplete significant amounts of nutrients from the soil. The attached tops and leaves are
burned in the distillery. The detached leaves and slash should be left to decompose and
improve structure of the plantation soil.
Post sai meeletult pikk kuid loodetavasti te ei pahanda.
Kokkuvõttest peaks selge olema et autokütust ei ole võimalik orgaanikast toodetavaga asendada. Hädapärast saaks ainult ehitada kohalikke biomassil töötavaid elektrijaamu.
[edit]
ja muudan posti veelgi pikemaks
kütuseelemendil töötavast autost siis nii palju:
A Efficiency of a Fuel Cell System
In their Science paper, Deluga et al. (2004) claim the following:
. . . Further, combustion used for transportation has 20% efficiency as compared
with up to 60% efficiency for a fuel cell. . .The efficiency of these processes for a fuel cell
suggests that it may be possible to capture >50% of the energy from photosynthesis
as electricity in an economical chemical process that can be operated at large or small
scales. (p. 996).
Following Deluga et al., Patzek (2004) used 60% as an estimate of the overall efficiency of
a hydrogen fuel-cell car. Even this optimistic estimate could not make the industrial corn-ethanol
cycle sustainable to within a factor of two. Not so with sugarcane ethanol. It might be called
somewhat sustainable if the path from the ethanol to electric shaft work were 60% efficient.
First, we assume that the cane ethanol-water mixture used to generate hydrogen is analytically
pure C2H5OH and H2O. Thus, there are no other contaminants to poison65 the delicate catalyst that
will convert this EtOH-H2O mixture to hydrogen, carbon dioxide and carbon monoxide (Deluga
et al., 2004). The catalyst is made of a rare-earth metal, rhodium66, and a Lanthanoid, cerium67.
The catalytic reaction is claimed to have 100% selectivity and >95% conversion efficiency. We
assume the conversion efficiency n1 = 0.96.
After Bossel (Bossel, 2003), we summarize efficiency of a Proton Exchange Membrane (PEM)
fuel cell as follows. In fuel cells, gaseous hydrogen is combined with oxygen to water. This process
is the reversal of the electrolysis of liquid water and should provide an open circuit voltage of 1.23
V (Volts) per cell. Because of polarization losses at the electrode interfaces the maximum voltage
observed for PEM fuel cells is between 0.95 and 1.0 V. Under operating conditions the voltage is
further reduced by ohmic resistance within the cell. A common fuel cell design voltage is 0.7 V.
The mean cell voltage of 0.75 V may be representative for standard driving cycles. Consequently,
the average energy released by reaction of a single hydrogen molecule is equivalent to the product
of the charge current of two electrons and the actual voltage of only 0.75 V instead of the 1.48 V
corresponding to the hydrogen high heating value68. Therefore, in automotive applications, PEM
fuel cells may reach mean voltage efficiencies of
n2 =(0.75 V)/(1.48 V)= 0.50
However, there are more losses to be considered. The fuel cell systems consume part of the generated
electricity. Typically, automotive PEM fuel cells consume 10% or more of the rated stack power
output to provide power to pumps, blowers, heaters, controllers, etc. At low power demand the fuel
cell efficiency is improved, while the relative parasitic losses increase. The small-load advantages
are lost by increasing parasitic losses. Let us assume optimistically that for all driving conditions
the net power output of an automotive PEM fuel cell system is about n3 = 0.9 of the power output
of the fuel cell stack.
Depending on the chosen drive train technology, the DC power is converted to frequencymodulated
AC or to voltage-adjusted DC, before motors can provide motion for the wheels. Energy
is always lost in the electric system between fuel cell and wheels. The overall electrical efficiency
of the electric drive train can hardly be better than n4 = 0.9.
By multiplying the efficiency estimates, one obtains for the maximum possible tank-to-wheel
efficiency of a hydrogen fuel cell vehicle
n = n1n2n3n4 = 0.96 × 0.50 × 0.90 × 0.90 = 0.38, (11)
or 38%. This optimistic estimate agrees exactly with another analysis (31-39%) (Fleischer and
Ørtel, 2003), and is significantly less than the 60% used by the promoters of a hydrogen economy
and hydrogen fuel cell vehicles.
Ehk siis kütuseelement pole midagi nii säästlik kui reklaamitakse
_________________ Teach a man to reason and he'll think for a lifetime
Common sense - so rare that it's a damn superpower
Vaadates paljude inimeste sõnavõtte siin ja mujal jääb üle ainult klassikuid tsiteerida - "I weep for humanity" |
|
Kommentaarid: 106 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
86 |
|
tagasi üles |
|
 |
bezdomn6i
HV kasutaja
liitunud: 05.11.2003
|
09.03.2006 13:23:11
|
|
|
Le Inc kirjutas: |
Krt see on küll viimane post sellel teemal (hulluks võib minna ). See on potentsiaalne energia! Pealegi saaks sellest vast 10 miljoni ameerikalse aastase energiavajaduse ära katta (vägivaldne võrdlus).
* Maakera taimestik suudab aasta jooksul salvestada Päikese poolt saadetud 5,6*10^3 ZJ (zettadaul 10^21 J) 6,5 Gt*a-1 rohelise (orgaanilise) massina. Siin peaks kaudselt ka väetised jms. kulud sees olema. Muide põllukultuuride kasvatamine võib olla hoopis töömahukam (sealjuures ka energiamahukam) kui lasta loodusel omaviisi käia. Aga samas ega lepa lehti meist ilmselt keegi sööma ei hakka.
Kui me suudaks kas või 0,005% Maale langevast päikese kiirgusest ära kasutada, oleks aastane energiavajadus kaetud. |
ma absoluutselt ei vaidle vastu, et päikeselt tulev energia kataks inmeste energiavajaduse mitmekordselt, aga kui selle potentsiaalse energia (jätkusuutlik) vabastamine on liiga energiamahukas, siis pole sellest mingit erilist kasu.
lihtsam/odavam/mugavam on kasutada olemasolevaid päikesekonserve (fossiilkütused) kui ise neid konserve teha ja kasutada. eks põldu peeta ka selleks, et minimaalselt pinnaühikult minimaalsete kuludega maksimaalset saaki saada.
|
|
Kommentaarid: 8 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
4 |
|
tagasi üles |
|
 |
Ho Ho
HV Guru

liitunud: 16.02.2002
|
09.03.2006 13:59:58
|
|
|
Lisaks veel eelnevale jutule et minu mäletamist mööda saab fossiilsete kütuste kasutamisel tagasi ~50x rohkem energiat kui kulub nende kaevandamiseks. Eespool tsiteeritud uurimusest järeldub et parimal juhul saab biomassist tagasi 20% ehk 0.2x "rohkem".
Ehk siis ühe ühiku energiahulga saamiseks tuleb biomassi energiat kasutades kulutada ~250x rohkem energiat kui fossiilkütuseid kasutades.
_________________ Teach a man to reason and he'll think for a lifetime
Common sense - so rare that it's a damn superpower
Vaadates paljude inimeste sõnavõtte siin ja mujal jääb üle ainult klassikuid tsiteerida - "I weep for humanity" |
|
Kommentaarid: 106 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
86 |
|
tagasi üles |
|
 |
NuCleo
Kreisi kasutaja

liitunud: 20.09.2004
|
09.03.2006 14:03:48
|
|
|
Ho Ho kirjutas: |
Lisaks veel eelnevale jutule et minu mäletamist mööda saab fossiilsete kütuste kasutamisel tagasi ~50x rohkem energiat kui kulub nende kaevandamiseks. Eespool tsiteeritud uurimusest järeldub et parimal juhul saab biomassist tagasi 20% ehk 0.2x "rohkem".
Ehk siis ühe ühiku energiahulga saamiseks tuleb biomassi energiat kasutades kulutada ~250x rohkem energiat kui fossiilkütuseid kasutades. |
Aga see ongi see põhiline faktor ju, miks fossiilkütustele on raske mingeid piisavalt tõhusaid alternatiive leida...
_________________ 'sup? |
|
Kommentaarid: 10 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
9 |
|
tagasi üles |
|
 |
Le Inc
HV Guru

liitunud: 06.09.2002
|
09.03.2006 19:31:56
|
|
|
Ho Ho tubli et viitsisid mõned tabavad lõigud välja tuua. Kohe jäid silma suhteliselt mõttetud energiat raiskavad "protseduurid".
Milleks teha puidu massist pelleteid? See on ju vana nali et pelletite (k.a. briketi pressimine turbast) on meeletult energiat raiskav! Lihtsam on puu ära hakkida ja seejärel kas katlasse pihustada või piiritust ajada. Kindlalt 80% kadu kahaneks, ehk 30..40% peale. Kas ma saan õieti aru et ta kasutab piirituse kütteväärtusena 19 MJ/kg (peaks 29 MJ/kg olema)? Siiski destilleerimine on energiamahukas.
Tänapäeval ei tehta ühtegi keskmist või suuremat biomassil toimivat elektrijaama ilma jahutusvee realiseerimise võimaluseta. 30% on jah elektriline efektiivsus, aga 80..90% on võimalik saavutada ka jahutusvee ära kasutamisega (metsakuiv puu pole ka probleem, hiljem saab niiskuse kondensaatoritega kinni püüda). Sama lugu on ka destillatsiooni juures, kus jahutusvee saaks ära kasutada.
Kui sul ikka on kitsas käes siis tehakse kõik et viimnegi piisk läheks asja ette. Tundub et selle töö on miskine naftamagnaat tellinud ...
|
|
Kommentaarid: 56 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
54 |
|
tagasi üles |
|
 |
marti252
HV kasutaja
liitunud: 10.05.2003
|
10.03.2006 23:20:48
|
|
|
Le Inc kirjutas: |
Ho Ho tubli et viitsisid mõned tabavad lõigud välja tuua. Kohe jäid silma suhteliselt mõttetud energiat raiskavad "protseduurid".
Milleks teha puidu massist pelleteid? See on ju vana nali et pelletite (k.a. briketi pressimine turbast) on meeletult energiat raiskav! Lihtsam on puu ära hakkida ja seejärel kas katlasse pihustada või piiritust ajada. Kindlalt 80% kadu kahaneks, ehk 30..40% peale. Kas ma saan õieti aru et ta kasutab piirituse kütteväärtusena 19 MJ/kg (peaks 29 MJ/kg olema)? Siiski destilleerimine on energiamahukas. |
Pelleteid tehakse sellepärast, et oleks kergem laevadega transportida. Ja mida märjem puu on seda väiksem on tema antav energiahulk, seepärast on vaja puud kuivatada.
Tunudb, et sa pole viitsinud ikka lugeda seda
|
|
Kommentaarid: 9 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
9 |
|
tagasi üles |
|
 |
Fiocchi
HV kasutaja

liitunud: 04.01.2005
|
11.03.2006 00:13:19
|
|
|
marti252 kirjutas: |
Pelleteid tehakse sellepärast, et oleks kergem laevadega transportida. Ja mida märjem puu on seda väiksem on tema antav energiahulk, seepärast on vaja puud kuivatada.
Tunudb, et sa pole viitsinud ikka lugeda seda  |
Kuda neid pelleteid lihtsam laevaga vedada on kui hakkpuitu?
|
|
Kommentaarid: 16 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
15 |
|
tagasi üles |
|
 |
Ho Ho
HV Guru

liitunud: 16.02.2002
|
11.03.2006 00:23:23
|
|
|
Fiocchi kirjutas: |
marti252 kirjutas: |
Pelleteid tehakse sellepärast, et oleks kergem laevadega transportida. Ja mida märjem puu on seda väiksem on tema antav energiahulk, seepärast on vaja puud kuivatada.
Tunudb, et sa pole viitsinud ikka lugeda seda  |
Kuda neid pelleteid lihtsam laevaga vedada on kui hakkpuitu? |
Ruumala vahe
Samuti kas keegi oskaks seletada miks pelletite tegemine on keerulisem/energiakulukam kui hakkpuidu tegemine?
_________________ Teach a man to reason and he'll think for a lifetime
Common sense - so rare that it's a damn superpower
Vaadates paljude inimeste sõnavõtte siin ja mujal jääb üle ainult klassikuid tsiteerida - "I weep for humanity" |
|
Kommentaarid: 106 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
86 |
|
tagasi üles |
|
 |
Le Inc
HV Guru

liitunud: 06.09.2002
|
11.03.2006 00:45:57
|
|
|
marti252 kirjutas: |
Ja mida märjem puu on seda väiksem on tema antav energiahulk, seepärast on vaja puud kuivatada.
Tunudb, et sa pole viitsinud ikka lugeda seda  |
Arghh, tänapäeval on olemas suhteliselt odavad lahendused (kondensaatorid ehk pesurid) mis kondenseerivad katlast väljuva veeauru. Olen seda pea igas oma postis kirjutanud. Lugege! Näiteks turvas mis katlasse läheb on ca. 40% niiskusega. Pisut kuivem turvas (30% ja alla) võib katla ülekuumendada ja tööreiimist välja viia, nii et liiga kuiv pole kah hea.
Juba sellepärast on pelletite tegemine energiamahukam et lisaks puidu hakkimisele peab neid veel ka meeletu rõhu all kokku pressima. Hakkepuidul ei pea. Paraku ei oska konkreetselt öelda palju 1 kg hakke või pelletite tootmise peale enrgiat kulub.
Nagu ka Lippmaa on rääkinud tuleb need 30..50 üleminekuaastat üle elada kas fossiilsete kütuste jääkidega, hakata kasutama järjest rohkem biomassi ja kasutada rohkem tuuleenergiat. Seda meest tasub uskuda.
Taastuv biomass on siis taastuv kui seda lõigatakse ja juurdekasvu arvutatakse ühel ja samal pinnal. Kui me kõik hakkame Amazonasest puitu vedama siis see pole enam taastuv. Eestil on seda rohelist kama kamulaga ja ka põlevkivigi peaks paar miljardit tonni maapõues olema. Vähemalt peaksime meie mõnusalt üleminekuperioodi üle elama. Näiteks kui vedelkütust vaja, kasutame põlevkivi bensiini.
|
|
Kommentaarid: 56 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
54 |
|
tagasi üles |
|
 |
namstoop
HV Guru

liitunud: 05.11.2001
|
11.03.2006 09:57:57
|
|
|
Põlevkivist on otsas kolmandik. Nii et jah, 2 miljardit tonni on veel kasutamiseks olemas, 1 miljard sai just hiljuti täis.
_________________ verba volant, scripta manent
Hoiatus! Olen sinu postituses olevate lolluste ja nõmeduste vastu allergiline. Lolluste ilmnemisel võib kaasneda raskekujuline sarkastiline reaktsioon. |
|
Kommentaarid: 72 loe/lisa |
Kasutajad arvavad: |
   |
:: |
3 :: |
1 :: |
63 |
|
tagasi üles |
|
 |
Scart
HV Guru

liitunud: 04.02.2002
|
11.03.2006 12:03:15
|
|
|
namstoop kirjutas: |
Põlevkivist on otsas kolmandik. Nii et jah, 2 miljardit tonni on veel kasutamiseks olemas, 1 miljard sai just hiljuti täis. |
samuti on norra rannikuvetes 3 miljardit tonni alles ootamas
|
|
Kommentaarid: 119 loe/lisa |
Kasutajad arvavad: |
   |
:: |
5 :: |
2 :: |
101 |
|
tagasi üles |
|
 |
Ho Ho
HV Guru

liitunud: 16.02.2002
|
11.03.2006 13:20:20
|
|
|
Põlevkivi koha pealt veel nii palju et kas mitte suur osa sellest ei asu asustatud piirkondade all ning sell kätte saamiseks peaks suht palju inimesi kusagile mujale elama saatma?
Võibolla ma mäletan asju valesti, fosforiidisõdade ajal olin alles koolieelik
_________________ Teach a man to reason and he'll think for a lifetime
Common sense - so rare that it's a damn superpower
Vaadates paljude inimeste sõnavõtte siin ja mujal jääb üle ainult klassikuid tsiteerida - "I weep for humanity" |
|
Kommentaarid: 106 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
86 |
|
tagasi üles |
|
 |
Le Inc
HV Guru

liitunud: 06.09.2002
|
11.03.2006 20:32:32
|
|
|
Igatahes see vana kes telekas 1 miljardindast tonnist putras, rääkis veel 2 miljardist kaevandatavast põlevkivi tonnist. Ju ta siis mõtles ikka seda mida hõlbus kätte on saada.
|
|
Kommentaarid: 56 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
54 |
|
tagasi üles |
|
 |
Zajats
HV kasutaja
liitunud: 10.08.2002
|
12.03.2006 18:30:10
|
|
|
Meil on kõige reaalsem teha väiksed tuumarektorid. Uraani on meil kõrini, tuleb ainult kaevandada. Tänapäeval on tehnoloogia juba nii turvaline et pole ohtlik.
|
|
Kommentaarid: 16 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
15 |
|
tagasi üles |
|
 |
gemini
HV Guru
liitunud: 03.12.2001
|
12.03.2006 19:03:03
|
|
|
Ho Ho kirjutas: |
ja muudan posti veelgi pikemaks
kütuseelemendil töötavast autost siis nii palju:
A Efficiency of a Fuel Cell System
In their Science paper, Deluga et al. (2004) claim the following:
. . . Further, combustion used for transportation has 20% efficiency as compared
with up to 60% efficiency for a fuel cell. . .The efficiency of these processes for a fuel cell
suggests that it may be possible to capture >50% of the energy from photosynthesis
as electricity in an economical chemical process that can be operated at large or small
scales. (p. 996).
Following Deluga et al., Patzek (2004) used 60% as an estimate of the overall efficiency of
a hydrogen fuel-cell car. Even this optimistic estimate could not make the industrial corn-ethanol
cycle sustainable to within a factor of two. Not so with sugarcane ethanol. It might be called
somewhat sustainable if the path from the ethanol to electric shaft work were 60% efficient.
First, we assume that the cane ethanol-water mixture used to generate hydrogen is analytically
pure C2H5OH and H2O. Thus, there are no other contaminants to poison65 the delicate catalyst that
will convert this EtOH-H2O mixture to hydrogen, carbon dioxide and carbon monoxide (Deluga
et al., 2004). The catalyst is made of a rare-earth metal, rhodium66, and a Lanthanoid, cerium67.
The catalytic reaction is claimed to have 100% selectivity and >95% conversion efficiency. We
assume the conversion efficiency n1 = 0.96.
After Bossel (Bossel, 2003), we summarize efficiency of a Proton Exchange Membrane (PEM)
fuel cell as follows. In fuel cells, gaseous hydrogen is combined with oxygen to water. This process
is the reversal of the electrolysis of liquid water and should provide an open circuit voltage of 1.23
V (Volts) per cell. Because of polarization losses at the electrode interfaces the maximum voltage
observed for PEM fuel cells is between 0.95 and 1.0 V. Under operating conditions the voltage is
further reduced by ohmic resistance within the cell. A common fuel cell design voltage is 0.7 V.
The mean cell voltage of 0.75 V may be representative for standard driving cycles. Consequently,
the average energy released by reaction of a single hydrogen molecule is equivalent to the product
of the charge current of two electrons and the actual voltage of only 0.75 V instead of the 1.48 V
corresponding to the hydrogen high heating value68. Therefore, in automotive applications, PEM
fuel cells may reach mean voltage efficiencies of
n2 =(0.75 V)/(1.48 V)= 0.50
However, there are more losses to be considered. The fuel cell systems consume part of the generated
electricity. Typically, automotive PEM fuel cells consume 10% or more of the rated stack power
output to provide power to pumps, blowers, heaters, controllers, etc. At low power demand the fuel
cell efficiency is improved, while the relative parasitic losses increase. The small-load advantages
are lost by increasing parasitic losses. Let us assume optimistically that for all driving conditions
the net power output of an automotive PEM fuel cell system is about n3 = 0.9 of the power output
of the fuel cell stack.
Depending on the chosen drive train technology, the DC power is converted to frequencymodulated
AC or to voltage-adjusted DC, before motors can provide motion for the wheels. Energy
is always lost in the electric system between fuel cell and wheels. The overall electrical efficiency
of the electric drive train can hardly be better than n4 = 0.9.
By multiplying the efficiency estimates, one obtains for the maximum possible tank-to-wheel
efficiency of a hydrogen fuel cell vehicle
n = n1n2n3n4 = 0.96 × 0.50 × 0.90 × 0.90 = 0.38, (11)
or 38%. This optimistic estimate agrees exactly with another analysis (31-39%) (Fleischer and
Ørtel, 2003), and is significantly less than the 60% used by the promoters of a hydrogen economy
and hydrogen fuel cell vehicles.
Ehk siis kütuseelement pole midagi nii säästlik kui reklaamitakse  |
See lõik käib õnneks ainult PEMFC tüüpi kütuseelementide kohta. Kahjuks on PEM tõesti sobivaim autodes kasutamiseks.
Ma isiklikult loodan, et tehnoloogiliselt saab asja DMFC-KE, mis peaks väga sobima väikstele elektroonikaasjadele. Suuremate elektritarbijate jaoks peaks sobima ju näiteks MCFC-kütuseelement. Selle puhas elektriline kasutegur on muljetavaldavad 60%. Lisadel veel KE töös eralduva soojuse, saaks kasuteguri juba 85%-le. MCFC eelis on see, et ta ei kasuta kalleid plaatina-katalüsaatoreid. Tema miinus aga kõrge töötemperatuur, mis põhjustab kiiret korrosiooni
|
|
Kommentaarid: 75 loe/lisa |
Kasutajad arvavad: |
   |
:: |
3 :: |
2 :: |
61 |
|
tagasi üles |
|
 |
stepzter
HV veteran

liitunud: 11.11.2001
|
12.03.2006 20:16:08
|
|
|
Zajats kirjutas: |
Uraani on meil kõrini, tuleb ainult kaevandada. |
Päris kõrini ei ole. Praeguse elektri tarbimise tuuma energiaga rahuldamise puhul ammendataks kõik vähem ja rohkem kvaliteetset avastatud ja oletatavad uraani maardlad 97 aastaga.
|
|
Kommentaarid: 26 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
26 |
|
tagasi üles |
|
 |
Elof
HV Guru

liitunud: 07.05.2003
|
12.03.2006 20:44:04
|
|
|
stepzter kirjutas: |
Zajats kirjutas: |
Uraani on meil kõrini, tuleb ainult kaevandada. |
Päris kõrini ei ole. Praeguse elektri tarbimise tuuma energiaga rahuldamise puhul ammendataks kõik vähem ja rohkem kvaliteetset avastatud ja oletatavad uraani maardlad 97 aastaga. |
Väidetavalt pidavat ligemal ajal kasutusse tulema ju uut tüüpi reaktorid' milledega saaks, tuhandeid aastaid vähemalt, uhada.
Hetkel küll täpsemalt meeles pole, ehk siis saunajuttude tasemel mälestused.
gemini kirjutas: |
TanElofJ, mõtled termotuumareaktoreid? Mis töötavad raskevesinikul? |
Mu mälu ei tööta korralikult, mingi laiemalt levinud tuumakütus oli.
Võib vabalt võtta ka kui BS'i, kuna kardan et ligemal ajal ei viitsi vist sellise jutu puhumise paika üles kaevata.
viimati muutis Elof 12.03.2006 21:42:50, muudetud 1 kord |
|
Kommentaarid: 212 loe/lisa |
Kasutajad arvavad: |
   |
:: |
2 :: |
0 :: |
175 |
|
tagasi üles |
|
 |
gemini
HV Guru
liitunud: 03.12.2001
|
12.03.2006 21:40:43
|
|
|
TanElofJ, mõtled termotuumareaktoreid? Mis töötavad raskevesinikul?
|
|
Kommentaarid: 75 loe/lisa |
Kasutajad arvavad: |
   |
:: |
3 :: |
2 :: |
61 |
|
tagasi üles |
|
 |
aht5
HV vaatleja
liitunud: 10.03.2006
|
|
Kommentaarid: 1 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
1 |
|
tagasi üles |
|
 |
Ho Ho
HV Guru

liitunud: 16.02.2002
|
12.03.2006 21:57:18
|
|
|
stepzter kirjutas: |
Zajats kirjutas: |
Uraani on meil kõrini, tuleb ainult kaevandada. |
Päris kõrini ei ole. Praeguse elektri tarbimise tuuma energiaga rahuldamise puhul ammendataks kõik vähem ja rohkem kvaliteetset avastatud ja oletatavad uraani maardlad 97 aastaga. |
Sama tempoga põlevkivi põletades saaks see meie kaevandustest otsa ~60 aastaga
_________________ Teach a man to reason and he'll think for a lifetime
Common sense - so rare that it's a damn superpower
Vaadates paljude inimeste sõnavõtte siin ja mujal jääb üle ainult klassikuid tsiteerida - "I weep for humanity" |
|
Kommentaarid: 106 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
1 :: |
86 |
|
tagasi üles |
|
 |
Scart
HV Guru

liitunud: 04.02.2002
|
13.03.2006 10:41:38
|
|
|
TanElofJ kirjutas: |
Väidetavalt pidavat ligemal ajal kasutusse tulema ju uut tüüpi reaktorid' milledega saaks, tuhandeid aastaid vähemalt, uhada.
Hetkel küll täpsemalt meeles pole, ehk siis saunajuttude tasemel mälestused.
|
tegemist on fast breeder reaktoritega, mille esirinnas on Hiina
lugemist
|
|
Kommentaarid: 119 loe/lisa |
Kasutajad arvavad: |
   |
:: |
5 :: |
2 :: |
101 |
|
tagasi üles |
|
 |
marti252
HV kasutaja
liitunud: 10.05.2003
|
|
Kommentaarid: 9 loe/lisa |
Kasutajad arvavad: |
   |
:: |
0 :: |
0 :: |
9 |
|
tagasi üles |
|
 |
|
lisa lemmikuks |
|
|
sa ei või postitada uusi teemasid siia foorumisse sa ei või vastata selle foorumi teemadele sa ei või muuta oma postitusi selles foorumis sa ei või kustutada oma postitusi selles foorumis sa ei või vastata küsitlustele selles foorumis sa ei saa lisada manuseid selles foorumis sa võid manuseid alla laadida selles foorumis
|
|
Hinnavaatlus ei vastuta foorumis tehtud postituste eest.
|